ich will sie nicht nerven mit diesen Beiträgen, will nur darauf hinweisen, welche neue Dimensionen durch 3- d- Plots möglich sind, es ist wahrscheinlich eine Industrierevolution 5.0.
Schon alleine die Einsparung von Kerosion, die damit verbundenen Einsparungen an CO 2, Metallressourcen u.v.m.
Um besser zu verstehen, was mich motiviert, ein Vorspann zum Hauptpublikation:, Best - Bullytrader
Die Technik wird immer anspruchsvoller, sodass beispielsweise medizinische Geräte aus äußerst starken Materialien gebaut werden müssen, weshalb Forscher jetzt auf den 3D-Druck mit Graphen setzen. Bisher konnte Graphen nur in Grundstrukturen oder 2D-gedruckt werden, wobei mehrere Versuche des 3D-Druckens unternommen wurden. Das reine Graphen war aber zu viskos, um mit dem Materialextrusion-3D-Druckverfahren gedruckt zu werden. Sogar als Verbundwerkstoff konnte Graphen nicht ganz einfach, aber doch mit dem stereolithographischen oder Lasersinterverfahren gedruckt werden. Erst vor Kurzem haben es MIT-Forscher geschafft, eine 3D-Graphenstruktur mithilfe eines 3D-Druckers zu erstellen. 3D-Druck vom stärksten Material auf der Erde
Jetzt haben auch die Ingenieure von Virginia Tech an einem Projekt gearbeitet, mit dem sie Graphenobjekte mit 3D-Druck herstellen konnten. Dadurch machten so einen bedeutenden Durchbruch, was die Anwendung von Graphen in der 3D-Druckbranche angeht. Graphen gilt als das stärkste Material auf der Erde und ist sogar zehnmal stärker als Stahl. Zudem hat es eine hohe thermische und Stromleitfähigkeit. 3D-gedruckte Graphenobjekte würden in bestimmten Branchen sehr begehrt sein – vor allem in der Luft- und Raumfahrt, im Bereich des Wärmemanagements, bei Katalyse und Sensoren sowie bei Batterien. Graphenoktett auf Erdbeerblüte Graphen zählt zu den stärksten Materialien der Welt (Bild © Virginia Tech).
Graphen besitzt eine Schicht aus Kohlenstoffatomen, die in einem Hexagonalgitter organisiert sind. Die aufeinandergestapelten Graphenblätter in einer dreidimensionalen Form bilden Graphit, das als Blei in Bleistiften bekannt ist, jedoch besitzt Graphit ziemlich schlechte mechanische Eigenschaften. Poröse Graphenstruktur ist als Graphen-Aerogel bekannt und hat bessere Eigenschaften. Jetzt sind Designer in der Lage eine Topologie zu erschaffen, die aus miteinander verbundenen Schichten aus Graphen besteht, die mit hoher Auflösung in jede gewünschte Form gebracht werden können.
Gewichtsreduzierung
3-D-Verbundgewebe sind drastisch leichter als Metallstrukturen. Dies gilt insbesondere für die Luft- und Raumfahrtindustrie. Jedes Pfund Gewicht, das ein Flugzeug einspart, spart dem Flugzeugbetreiber schätzungsweise rund 1 Million US-Dollar an Betriebskosten, vor allem Treibstoff, über die gesamte Lebensdauer des Flugzeugs. Durch den intelligenten Einsatz von 3D-Verbundwebstrukturen im Flugzeugbau kann das Gewicht eines Flugzeugs um bis zu 30 Prozent gesenkt werden, was zu erheblichen Einsparungen bei den Betriebskosten führt.
Beseitigung von Delaminationen
Eine Delaminierung tritt auf, wenn zwei oder mehr Schichten eines 2-D-Gewebeverbundstoffs voneinander getrennt oder delaminiert werden. Delaminationen beeinträchtigen die Festigkeit und Zuverlässigkeit des Teils, das ausgetauscht werden muss, um Beschädigungen und schwerwiegende Sicherheitsprobleme zu vermeiden. Delamination ist die Hauptursache für Schäden an 2-D-Verbundwerkstoffen.
Das 3-D-Weben erzeugt fast netzförmige Verbundstrukturen, die durch ihr Garn vollständig miteinander verbunden sind, im Gegensatz zu 2-D-Verbundstrukturen, die eine Reihe verschiedener Materialschichten enthalten, die künstlich miteinander verbunden sind. Dies bedeutet, dass bei 3-D-Verbundgeweben keine Gefahr der Delaminierung besteht, sodass die Festigkeit und Zuverlässigkeit erhalten bleibt.
Reduzierte Rissgefahr
2-D-Verbundwerkstoffe neigen zu Rissen, insbesondere bei Strukturen mit Biegungen, wie z. B. T-förmigen Strukturen. Aufgrund von Krümmungsbeschränkungen in den Schichten weisen viele 2D-Formen beträchtliche Lücken in Fugen und Schnittpunkten auf. Diese Räume und Taschen sind oft mit Harz gefüllt, das Risse bekommen kann.
3D-Verbundgewebe haben auch in komplexen Formen keine leeren Taschen, da sich ihre strukturelle Integrität entlang aller drei Achsen erstreckt. Die Rissraten in 3-D-Verbundgeweben sind daher weitaus geringer als in 2-D-Verbundgeweben.
Geringere Produktionszeiten
Die 2-D-Verbundherstellung ist ein langer und präziser Prozess. Zahlreiche Lagen aus 2-D-Material werden einzeln oder in größerem Format gewebt und anschließend zugeschnitten. Diese Schichten werden dann mit bestimmten Harzen vorimprägniert, wodurch sie zu sogenannten Prepreg-Materialien werden. Diese Materialien werden dann gestapelt und in einem Prozess, der als Zwirnen bekannt ist, in die erforderliche Form gebracht. Das Ausüben erfolgt oft von Hand und ist teuer und extrem zeitaufwändig. Die Schichten werden dann durch Infusion mit zusätzlichen Harzen in ihrer Form zusammenlaminiert - einige Prozesse und Strukturen erfordern sogar, dass die Materialschichten vor dem Laminieren zusammengenäht werden. Schließlich wird die Struktur für einen Zeitraum eingestellt, in dem die Harze aushärten.
Nachdem die Strukturen richtig ausgehärtet sind, ist eine weitere maschinelle Bearbeitung erforderlich, um ein fertiges Produkt zu bilden. Erforderliche sekundäre Bearbeitungsprozesse können Schneiden, Schaben, Schleifen, Entgraten und Bohren umfassen.
Im Gegensatz dazu ist das 3-D-Weben von Verbundstrukturen einfacher, schneller und kostengünstiger. Ähnlich wie bei 2-D-Webmaschinen weben 3-D-Webmaschinen Schuss- und Kettfäden entlang der X- und Y-Achse. Der Unterschied bei einer 3-D-Webmaschine besteht darin, dass sich das Gewebe nicht entlang der Y-Achse fortsetzt, sondern vertikal auf sich selbst aufbaut - Schuss- und Kettfäden werden nicht nur in einer Ebene zusammengewebt, sondern eine Ebene wird mit der nächsten zusammengewebt.
Abgesehen vom Entwerfen einer 3D-Bindung, die hochqualifizierte Konstrukteure erfordert, ist der 3D-Webprozess vollständig automatisiert und führt zu einer Netzform oder nahezu Netzformteilen. Dies reduziert die Herstellungszeit trotz der erhöhten Komplexität des 3-D-Webprozesses erheblich.
Durch das Weben ganzer Strukturen in 3-D wird der langsame und kostspielige Verzwirnungsprozess - der längste und teuerste Teil der Herstellung einer 2-D-Verbundstruktur - vollständig eliminiert, wodurch die Produktion erheblich beschleunigt und die Kosten gesenkt werden.
Kosten
Die Verwendung von 3-D-Gewebeverbundstrukturen anstelle von herkömmlichen Metall- oder 2-D-Verbundwerkstoffen kann zu Kosteneinsparungen sowohl durch den Herstellungsprozess als auch durch die Lebensdauer des Produkts führen. Die automatisierte 3-D-Webtechnologie und die Fähigkeit, nahezu die Endform zu erreichen, reduzieren die direkten Arbeits- und Sekundärbearbeitungskosten.
Indirekte Kosteneinsparungen ergeben sich aus Einsparungen bei den Betriebskosten, zum Beispiel bei der Kraftstoffersparnis. Da 3-D-Verbundwerkstoffe fester, belastbarer und weniger bruchempfindlich sind als 2-D-Verbundwerkstoffe, können sie außerdem viel seltener ausgetauscht werden, wodurch die Ersatz- und Wartungskosten gesenkt werden.
Beispiele für 3-D-Webanwendungen
Die Verwendung von Polymer-Verbundwerkstoffen in Flugzeugtriebwerken ist aufgrund der hohen Temperaturen und der komplexen Geometrien bei der Herstellung von Flugzeugtriebwerken seit langem eine Herausforderung. Polymerverbundstoffe sind jedoch wünschenswert, da die Luftfahrtindustrie, wie oben ausgeführt, ständig danach strebt, das Flugzeuggewicht zu verringern und die Treibstoffeffizienz zu erhöhen. Das Ersetzen herkömmlicher Titankomponenten durch Kohlefaserverbundwerkstoffe bei großen Motorteilen trägt zur Gewichtsreduzierung bei, da diese Verbundwerkstoffe erheblich leichter sind als vergleichbare Bauteile aus Metall. Darüber hinaus reduzieren zusammengesetzte Triebwerksteile den Geräuschpegel eines Flugzeugtriebwerks.
Das 3D-Weben war besonders erfolgreich bei der Weiterentwicklung der Luftfahrt-Hitzeschildtechnologie
|