es werden jetzt zusätzlich aktuelle Details in eine Datei mit dem Namen "Details.csv" geladen.
------------------------------------------Code ---------------------------------------------
#!/usr/bin/env python
# Authors: Doc2, brunobanani
# Code extracts historical Price-Data and current details from the Web.
# Source is finance @ Yahoo.com
# Python 2 code
import urllib
OutputDirectory = 'C:\\**'
Siemens = 'SIE.DE'
KS = 'SDF.DE'
Merck = 'MRK.DE'
HeidelCem = 'HEI.DE'
Henkel = 'HEN3.DE'
Thyssen = 'TKA.DE'
Allianz = 'ALV.DE'
BMW = 'BMW.DE'
Beiersdorf = 'BEI.DE'
DtBank = 'DBK.DE'
Lanxess = 'LXS.DE'
Coba = 'CBK.DE'
Conti = 'CON.DE'
Basf = 'BAS.DE'
Daimler = 'DAI.DE'
Fresenius = 'FRE.DE'
FreseniusM = 'FME.DE'
Linde = 'LIN.DE'
DeutBoer = 'DB1.DE'
Bayer = 'BAYN.DE'
VW = 'VOW.DE'
Adidas = 'ADS.DE'
DtPost = 'DPW.DE'
SAP = 'SAP.DE'
Lufth = 'LHE.DE'
MRueck = 'MUV2.DE'
Infineon = 'IFX.DE'
Telekom = 'DTE.DE'
RWE = 'RWE.DE'
Eon = 'EOAN.DE'
DAX = [Siemens, KS, Merck, HeidelCem, Henkel, Thyssen, Allianz, BMW, Beiersdorf,
DtBank, Lanxess, Coba, Conti, Basf, Daimler, Fresenius, FreseniusM, Linde,
DeutBoer, Bayer, VW, Adidas, DtPost, SAP, MRueck, Infineon, Telekom, RWE, Eon]
# DataBegin:
DayB = '10' # Day from which data should begin
MonthB = '2' # Month from which data should begin (0 is january)
YearB = '2000' # Year from which data should begin
# DataEnd:
DayE = '16' # Day of data end
MonthE = '2' # Month of data end (0 is january)
YearE = '2015' # Year of data end
# Download Historical Data
for i in DAX:
url = '
http://real-chart.finance.yahoo.com/table.csv?s='+ i +'&d='+ MonthE + '&e='+ DayE +'&f=' + YearE +'&g=d&a='+ MonthB +'&b='+ DayB +'&c='+ YearB +'&ignore=.csv'
path = OutputDirectory + i + '.csv'
urllib.urlretrieve(url, path)
###############
# Details
#
# For Configuration See:
http://www.jarloo.com/yahoo_finance/###############
columns = {
's': 'Symbol',
'n': 'Name',
'a': 'Ask',
'b': 'Bid',
'p': 'Previous Close',
'j2': 'Shares Outstanding',
'r': ' P/E Ratio',
'p6': 'Price / Book'
}
url = '
http://finance.yahoo.com/d/quotes.csv?s=' + '+'.join(DAX) + '&f=' + ''.join(columns.keys())
data = ','.join(columns.values()) + '\n' + urllib.urlopen(url).read()
with open(OutputDirectory + 'Details.csv', 'w') as text_file:
text_file.write(data)
print 'DAX data succesfully retrieved'